图像标注广泛应用于智能驾驶、安防巡检、应急救援等领域。尽管社会为领域培养了大量的图像标注人才,但是人工的弊端仍无法完全弥补。近些年随着AI技术的不断发展,机械化的图像标注工作迎来了改变契机,许多利用AI进行图像标注的平台面向大众,成都慧视推出的SpeedDP深度学习算法开发平台就是利用AI训练、部署实现自动化图像标注。它的出现,极大地改变了图像标注行业的现状。传统标注和AI标注的不同在于传统的图像标注需要人工肉眼判断目标,然后进行手动拉框,如此反复。这是一个机械化的动作,久而久之便会使图像标注员产生倦怠,从而影响效率。此外,面对复杂背景下,目标数量众多、重叠等情况,人工拉框也很无力。AI识别怎么选择合适的模块?成都视频图像识别模块平台

RK3588作为瑞芯微旗舰级芯片,工业级的算力受到了很多领域的青睐,但是由于前端相机的选择不同,并不是每块RK3588的图像处理板都可以直接拿来使用,需要的是根据相机接口和应用场景进行深度定制。成都慧视光电技术有限公司就有这样的快速集成定制的能力。作为拥有多年图像处理板开发经验的团队,成都慧视能够快速定制SDI、CVBS、CAMERALINK、USB、LVDS、DVP等丰富接口的RK3588系列图像处理板,并能够根据应用环境定制外壳、散热器等。成都自主检测图像识别模块板如何提升无人机的AI识别精度?

2024年上半年我国就发生了多起重大火灾事故,例如江西新余临街店铺起火,河南开封学校礼堂火灾等。作为爆发迅速的一种灾害,火灾,需要防患于未然。事前预警、事发情况的透明都是阻碍救援的大敌。因此,基于传统摄像头的AI火焰识别就有了存在的必要性。火焰识别技术依托于传统的摄像头,目前市面上的火焰识别摄像机分为两种,一是传感器和算法组合,在摄像头的基础上加装高性能的AI图像处理板,再定制化火焰识别的算法,就能够对摄像头所示范围进行智能化监控,一旦出现火苗,摄像头就能够立即识别并发出警报。另一个是纯算法,致力于在黑暗、烟雾等环境下,准确捕捉到微小的火焰变化,并通过算法进行识别,从而实现提前预警。
AI的不断应用发展使得传统的人工工作的弊端得到了很好的弥补。比如在图像标注这个领域,传统的标注需要招聘大量的人员,并且标注图像所耗费的时间精力也是不可估量的,而AI模型的出现让这一切都成为过去。利用慧视光电打造的深度学习算法开发平台SpeedDP,就能够针对场景识别进行特有的模型部署训练,通过大量的训练,让AI学会自动标注图像。平台采用标准的AI算法开发流程,通过从需求分析、数据制作到模型训练、测试验证以及模型部署几个主要模块。如何提升识别算法的性能?

如果是一般环境,则可以选择Viztra-ME025这样的中端图像处理板,板卡采用RK3399Pro这样的芯片,双Cortex-A72+四Cortex-A53大小核CPU结构设计;CPU主频1.8GHz,输出3.0TOPS的算力。而需要轻型、小型化设计的场景,如小型无人机吊舱,为了尽量节省空间占用,节约无人机本身能耗,则可以选择小型化、低功耗的图像处理板Viztra-LE026,板卡采用RV1126开发而成,Φ38*12mm的外形设计用在空间紧凑的传统摄像头中,十分合适。有了图像处理板,还需要定制相应的AI算法,在算法的赋能下,智能化的摄像头就打造完成,它能够实现对视野范围内的智能AI识别检测。小型FPV目标识别选什么图像处理板?成都轨迹图像识别模块
成都慧视利用RK3588芯片打造了一个高性能的Viztra-HE030图像处理板。成都视频图像识别模块平台
无人机是巡检领域的空中巡检员,搭载智慧“眼”的无人机能够替代人工,实现自主巡检。无人机可以搭载红外光和可见光两种传感器,实现昼夜巡检也不是梦,一基杆塔*用十分钟的时间便可完成巡检工作。例如在电力巡检中,传统模式下,工人只能采用望远镜远程查看线路,不仅费眼睛,还费时间。同时,由于光线等外界因素的干扰,缺陷的确认也加大了难度,不得不背着安全带近距离校验,工人的安全也受到威胁。而无人机则可以在发现缺陷后,通过抵近观察的方式进行仔细查看,收集缺陷周围360°照片回去分析,不仅安全也高效率。成都视频图像识别模块平台
文章来源地址: http://dzyqj.ehsy.com-m.chanpin818.com/chuanganqisr/sjtxcgq/deta_27828118.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。